
"k ooo 

Smart Memories: A Modular Reconfigurable Architecture 
Ken Mai, Tim Paaske, Nuwan Jayasena, Ron Ho, William J. Dally, Mark Horowitz 

Computer Systems Laboratory 
Stanford University 

Stanford, California 94305 
{demon,paaske,jayasena,ronho,billd,horowitz}@leland.stanford.edu 

Abstract 

Itends in VLSI technology scaling demand that future comput- 
ing devices be narrowly focused to achieve high performance 
and high efficiency, yet also target the high volumes and low 
costs of widely applicable general purpose designs. To address 
these conflicting requirements, we propose a modular reconfig- 
urable architecture called Smart Memories, tai^eted at com- 
puting needs in the O.l^m technology generation. A Smart 
Memories chip is made up of many processing tiles, each con- 
taining local memory, local interconnect, and a processor core. 
For efficient computation under a wide class of possible appli- 
cations, the memories, the wires, and the computational model 
can all be altered to match the applications. To show the appli- 
cability of this design, two very different machines at opposite 
ends of the architectural spectrum, the Imagine stream proces- 
sor and the Hydra speculative multiprocessor, are mapped onto 
the Smart Memories computing substrate. Simulations of the 
mappings show that the Smart Memories architecture can suc- 
cessfully map these architectures with only modest perfor- 
mance degradation. 

1. Introduction 

The continued scaling of integrated circuit fabrication technology 
will dramatically affect the architecture of future computing sys- 
tems. Scaling will make computation cheaper, smaller, and lower- 
power, thus enabling more sophisticated computation in a growing 
number of embedded applications. This spread of low-cost, low- 
power computing can easily be seen in today's wired (e.g. gigabit 
ethemet or DSL) and wireless communication devices, gaming 
consoles, and handheld PDAs. These new applications have differ- 
ent characteristics from today's standard workloads, often contain- 
ing highly data-parallel streaming behavior [1]. While the 
applications will demand ever-growing compute performance, 
power (opsAV) and computational efficiency (ops/$) are also para- 
mount; therefore, designers have created narrowly-focused custom 
silicon solutions to meet these needs. 

However, the scaling of process technologies makes the construc- 
tion of custom solutions increasingly difficult due to the increasing 
complexity of the desired devices. While designer productivity has 
improved over time, and technologies like system-on-a-chip help to 
manage complexity, each generation of complex machines is more 
expensive to design than the previous one. High non-recurring fab- 
rication costs (e.g. mask generation) and long chip manufacturing 

This work was supported in part by DARPA contract MDA904-98-R-S855. 

DISTRIBUTION STATEIV1EMT A 
Approved for Public Release 

Distribution Unlimited 

delays mean that designs must be all the more carefully validated, 
further increasing the design costs. Thus, these large complex chips 
are only cost-effective if they can be sold in large volumes. This 
need for a large market runs counter to the drive for efficient, nar- 
rowly-focused, custom hardware solutions. 

To fill the need for widely-applicable computing designs, a number 
of more general-purpose processors are targeted at a class of prob- 
lems, rather than at specific applications. Tri-media [2,3], Equator 
[4], Mpact [5], IRAM [6], and many other projects are all attempts 
to create general purpose computing engine for multi-media appli- 
cations. However, these attempts to create more universal comput- 
ing elements have some limitations. First, these machines have 
been optimized for applications where the parallelism can be 
expressed at the instruction level using either VLIW or vector 
engines. However, they would not be very efficient for applications 
that lacked parallelism at this level, but had, for example, thread- 
level parallelism. Second, their globally shared resource models 
(shared multi-ported registers and memory) will be increasingly 
difficult to implement in future technologies in which on-chip com- 
munication costs are appreciable [7,8]. Finally, since these 
machines are generally compromise solutions between true signal 
processing engines and general-purpose processors, their efficiency 
at doing either task suffers. 

On the other hand, the need for scalable architectures has also led to 
proposals for modular, explicitly parallel architectures that typically 
consist of a number of processing elements and memories on a die 
connected together by a network [9,10]. The modular nature of 
these designs ensures that wire lengths shrink as technologies 
improve, allowing wire and gate delays to scale at roughly the same 
rate [7]. Additionally, the replication consumes the growing number 
of transistors. The multiple processing elements take advantage of 
both instruction-level and thread-level parallelism. One of the most 
prominent architectures in this class is the MIT Raw project [10], 
which focuses on the development of compiler technologies that 
take advantage of exposed low-level hardware. 

Smart Memories combines the benefits of both approaches to create 
a partitioned, explicifly parallel, reconfigurable architecture for use 
as a future universal computing element. Since different application 
spaces naturally have different communication patterns and mem- 
ory needs, finding a single topology that fits well with all applica- 
tions is very difficult. Rather than trying to find a general solution 
for all applications, we tailor the appearance of the on-chip mem- 
ory, interconnection network, and processing elements to better 
match the application requirements. We leverage the fact that long 
wires in current (and future) VLSI chips require active repeater 
insertion for minimum delay. The presence of repeaters means that 
adding some reconfigurable logic to these wires will only modestly 

20040130 101 



impact their performance. Reconfiguration at this level leads to 
coarser-grained configurability than previous reconfigurabje archi- 
tectures, most of which were at least in part based on FPGA imple- 
mentations [11-18]. Compared to these systems, Smart Memories 
trades away some flexibility for lower overheads, more familiar 
programming models, and higher efficiency. 

Section 2 and Section 3 describe the Smart Memories architecture. 
To test the flexibility of the architecture, we mapped onto the Smart 
Memories substrate two machines at different ends of the architec- 
tural sp)ectrum: a dedicated streaming processor and a speculative 
multiprocessor. Section 4 discusses the mapping of these two 
widely disparate architectures onto one hardware substrate and the 
simulated relative performance. Section 5 draws conclusions from 
the architectural proposal and mapping studies. 

quads also makes the global interconnection network more efficient 
by reducing the number of global network interfaces and thus the 
number of hops between processors. 

Our goal in the tile design is to create a set of components that will 
span as wide an application set as possible. In current architectures, 
computational elements are somewhat standardized; today, most 
processors have multiple segmented functional units to increase 
efficiency when working on limited precision numbers [20-24]. 
Since much work has already been done on optimizing the mix of 
functional units for a wide application class [2,3,4,25], we instead 
focused our efforts on creating the flexibility needed to efficiently 
support different computational models. This requires creating a 
flexible memory system, flexible interconnection between the pro- 
cessing node and the memory, and flexible instruction decode. 

2. Smart Memories Overview 

At the highest level, a Smart Memories chip is a modular computer. 
It contains an array of processor tiles and on-die DRAM memories 
connected by a packet-based, dynamically-routed network 
(Figure 1). The network also connects to high-speed links on the 
pins of the chip to allow for the construction of multi-chip systems. 
Most of the initial hardware design work in the Smart Memories 
project has been on the processor tile design and evaluation, so this 
paper focuses on these aspects. 

Processing tile 
or DRAM block 

Quad tiertvorks 

Figure 1. A Smart Memories chip 

The organization of a processor tile is a compromise between VLSI 
wire constraints and computational efficiency. Our initial goal was 
to make each processor tile small enough so the delay of a repeated 
wire around the semi-perimeter of the tile would be less then a 
clock cycle. This leads to a tile edge of around 2.5mm in a O.lum 
technology [7]. This sized tile can contain a processor equivalent to 
a MIPS R5000 [19], a 64-bit, 2-issue, in-order machine with 64KB 
of on-die cache. Alternately, this area can contain 2-4MB of 
embedded DRAM depending on the assumed cell size. A 400mm^ 
die would then hold about 64 processor tiles, or a lesser number of 
processor tiles and some DRAM tiles. 

Since large-scale computations may require more computation 
power than what is contained in a single processing tile, we cluster 
four processor tiles together into a "quad" and provide a low-over- 
head, intra-quad, interconnection network. Grouping the tiles into 

3. Tile Architecture 

A Smart Memories tile consists of a reconfigurable memory sys- 
tem; a crossbar interconnection network; a processor core; and a 
quad network interface (Figure 2). To balance computation, com- 
munication, and storage, we allocated equal portions of the tile to 
the processor, interconnect, and memory. 

Crossbar interconnect 

SZSUM 
Processor 

Memory 
\ system of 
> 16 8KB 

I   SRAMs 

^k Quad 
interface 

Figure 2. Tile floorplan 

3.1 Memory System 

The memory system is of growing importance in processor design 
[26]. Different applications have different memory access patterns 
and thus require different memory configurations to optimize per- 
formance. Often these different memory structures require different 
control logic and status bits. Therefore, a memory system that can 
be configured to closely match the application demands is desirable 
[27]. 

A recent study of SRAM design [28] shows that the optimal block 
size for building large SRAMs is small, around a few KB. Large 
SRAMs are then made up of many of these smaller SRAM blocks. 
We leverage this naturally hierarchical design to provide low over- 
head reconfigurability. The basic memory mat size of 8KB is cho- 
sen based on a study of decoder and I/O overheads and an 
architectural study of the smallest memory granularity needed. 
Allocating a third of the tile area to memory allows for 16 indepen- 



dent 8KB memory mats, a total of 128KB per tile. Each mat is a 
1024x64b logical memory array that can perform reads, writes, 
compares, and read-modify-writes. All operations are byte- 
maskable. 

In addition to the memory array, there is configurable logic in the 
address and data paths. In the address path, the mats take in a 10-bit 
address and a 4-bit opcode to determine what operation is to be per- 
formed. The opcode is decoded using a reconfigurable logic block 
that is set up during the hardware configuration. The memory 
address decoder can use the address input directly or can be set in 
auto-increment/decrement streaming mode. In this mode, the mat 
stores the starting index, stream count, and stride. On each stream- 
ing mode request, the mat accesses the next word of the stream until 
reaching the end of the stream. 

T3 
s 

Column 
decoder 

Mat control 

6TSRAM 
cell array 

Cell IIO 

Write buffers and 
compare logic 

Figure 3. Memory mat detail 

In the datapath, each 64-bit word is associated with a valid bit and a 
4-bit configurable control field. These bits can be used for storing 
data state such as cache LRU or coherence bits. They are dual- 
ported to allow read-modify-write operations each cycle and can be 
flash cleared via special ojjcodes. Each mat has a write buffer to 
support pipelined writes and to enable conditional write operations 
{e.g. in the case of a cache write). Mats also contain logic in the out- 
put read path for comparisons, so they can be used as cache tag 
memory. 

For complex memory structures that need multiple accesses to the 
same data {e.g. snooping on the cache tags in a multiprocessor), 
four of the mats are fully dual-ported. Many applications and archi- 
tectures also need fully-associative memories which are inefficient 
and difficult to emulate using mats. Therefore, the tile memory sys- 
tem also contains a 64-entry content-addressable memory (CAM). 

The Smart Memories mats can be configured to implement a wide 
variety of caches, from simple, single-ported, direct-mapped struc- 
tures to set-associative, multi-banked designs. Figure 4 gives an 
example of four memory mats configured as a two-way set associa- 
tive cache with two of the mats acting as the tag memories and two 
other mats acting as the data memories. 

«i      * 
1 

Data mats Ctrl  • 

Index Data 

'  Ctrl 

Data Index 

ts 

1    1 1    1 
Tag ma 

latch? 

Index 

Ctrl 

Tag 

~^^~ Ctrl 

Tag 

Match 

Index 

A 1 
^ 

Figure 4. Mats configured as 2-way set-associative cache 

The mats can also be configured as local scratchpad memories or as 
vector/stream register files. These simpler configurations have 
higher efficiency and can support higher total memory bandwidth at 
a lower energy cost per access [29-31]. Associated with the mem- 
ory, but located in the two load-store units of the processor, are 
direct-memory access (DMA) engines that generate memory 
requests to the quad and global interconnection networks. When the 
memory mats are configured as caches, the DMA engines generate 
cache fill/spill requests. When the mats are configured for stream- 
ing or vector memories, the DMA engines generate the needed 
gather/scatter requests to fill the memory with the desired data. 

3.2 Interconnect 

To connect the different memory mats to the desired processor or 
quad interface port, the tile contains a dynamically routed crossbar 
which supports up to 8 concurrent references. The processor and 
quad interface generate requests for data, and the quad interface and 
memories service those requests. The crossbar does not intercon- 
nect different units of the same type {e.g. memory mat to memory 
mat communication is not supported in the crossbar). 

Requests through the crossbar contain a tag indicating the desired 
destination port and an index into the memory or unit attached to 
that port. The crossbar protocol always returns data back to the 
requestor, so data replies can be scheduled at the time of routing the 
forward-going request. Requests can be broadcast to multiple mats 
via wildcards, but only one data reply is allowed. The requests and 
replies are all pipelined, allowing a requestor to issue a new request 
every cycle. Arbitration is jierformed among the processor and quad 
interface ports since multiple requests for the same mat or quad 
interface port may occur. No arbitration is necessary on the return 
crossbar routes, since they are simply delayed versions of the for- 
ward crossbar routes. 

From circuit-level models of the crossbar and the memories, the 
estimated latency for a memory request is 2 processor clock cycles. 
About half of the time is spent in the crossbar, and the other half is 
spent in the memory mat. We project that our processor core will 
have a clock cycle of 20 fanout-of-four inverter delays (F04s), 
which is comparable to moderately aggressive current processor 



designs [7]. In a commodity 0.1 urn process, a 20 F04 cycle time is 
equivalent to a IGHz operating frequency. 

The quad interconnection network, shown in Figure 5, connects the 
four tiles in a quad together. The network consists of 9 64-bit multi- 
cast buses on which any of the 4 tiles or the global network can 
send or receive data. These buses may also be configured as half- 
word buses. In addition to these buses, a small number of control 
bits are broadcast to update state, atomically stall the processors, 
and arbitrate for the buses. The quad interface on each tile connects 
the internal tile crossbar to the quad network, thus mediating all 
communication to and from the tile. 

Global 
network 

Quad 

Ql = Quad Interface 

Figure 5. Quad interconnection network 

3.3 Processor 

The processor portion of a Smart Memories tile is a 64-bit process- 
ing engine with reconfigurable instruction format/decode. The com- 
putation resources of the tile consist of two integer clusters and one 
floating point (FP) cluster. The arrangement of these units and the 
FP cluster unit mix are shown in Figure 6. Each integer cluster con- 
sists of an ALU, register file, and load/store unit. This arithmetic 
unit mix reflects a trade-off between the resources needed for a 
wide range of applications and the area constraints of the Smart 
Memories tile [2-5]. Like current media processors, all 64-bit FP 
arithmetic units can also perform the corresponding integer opera- 
tions and all but the divide/sqrt unit perform subword arithmetic. 

The high operand bandwidth needed in the FP cluster to sustain 
parallel issue of operations to all functional units is provided by 
local register files (LRFs) directly feeding the functional units and a 
shared register file with two read and one write ports. The LRF 
structure provides the necessary bandwidth more efficiently in 
terms of area, power, and access time compared to increasing the 
number of ports to the shared register file [25,32]. The shared FP 
register file provides a central register pool for LRF overflows and 
shared constants. A network of result and operand buses transfers 
data among functional units and the register files. 

Optimal utilization of these resources requires that the instruction 
bandwidth be tailored to the application needs. When ILP is abun- 
dant, wide encodings explicitly express parallelism and enhance 
performance without significantly degrading code density. When 
ILP is limited, narrow instructions yield dense encodings without a 
loss in performance. The Smart Memories instruction path, shown 
at the block level in Figure 7, can be configured to efficiently sup- 
port wide or narrow instruction encodings. 

Ports to crossbar interconnect 

l|- ••| 

"luster 
LRF 

FPC 
"• 

Shared 
FPregfile ^ ^ 

  1 

Integer 
cluster 

Tfc 
FP 

adder 
"!■ 

^* 

^ 
i * 

1 : 

1 V " 
FP 

adder -hi 
Integer 
cluster 

 "I* T 
1 : 

 ' V 
FP 

divide/sqrt -hi ^ 
A* 

1 
1 . 

1 
ir^ 

FP 
multiplier -h ^ 

ik" 

. 

Figure 6. Smart Memories compute resources 

A 256-bit microcode instruction format achieves the highest utiliza- 
tion of resources. In this configuration, the processor issues opera- 
tions to all available units in parallel and explicitly orchestrates data 
transfers in the datapath. This instruction format is primarily 
intended for media and signal processing kernels that have high 
compute requirements and contain loops that can be unrolled to 
extract ample parallelism. For applications that contain ILP but are 
less regular, a VLIW instruction format that packs three instructions 
in a 128-bit packet is supported. This instruction format provides a 
compromise that achieves higher code density but less parallelism 
than the microcode, yet higher parallelism but less code density 
than narrow instructions. 



£V0 
address 

i 
Microcoded instructions 

Nfem ports Mem ports 
1                     1 

▼ 
PC 
Gen 

' ' 

Decode 
 ^ 

1 

Dependency 
analysis 

7 
(a) 

<   ir 

V 
ofur 
Mic 

ctio 
'OCO 

nal units 
ded control 

64b address 

t 
Encoded 

instructions 

Mem ports Mem porM 

t 1 

r ' 

▼ 

PC 
Gen 

Decode 

 4 

y 

Dependency 
analysis 

■ i 
V / 

To functional units 
(a) VLIW instruction issue 

Figure 7. Instruction path 

64b address 

t 
Encoded 

instructions 

i 
Mem ports Mem ports 

t i      1 
▼ 

PC 
Gen 

' ' 

Decode 

 i 

7 
(a) Si 

' 

Dependency 
analysis 

r4r 

0 functional units 
•alar instruction issue 

Finally, a 32-bit RISC-style instruction set is available for applica- 
tions that do not exhibit much ILP. To extract thread-level parallel- 
ism of such applications, each tile can sustain two concurrent, 
independent threads. The two threads on a tile are asymmetric. The 
primary thread may perform integer or FP computations and can 
issue up to two instructions per cycle, while the secondary thread is 
limited to integer operations at single-issue. The secondary thread 
is intended for light-duty tasks or for system-level support func- 
tions. For example, lower communication costs on systems with 
multiple processing nodes on a chip permit dynamic data and task 
migration to improve locality and load balance at a much finer grain 
than is practical in conventional multi-processors. The increased 
communication volume and resource usage tracking for such opera- 
tions can easily be delegated to the secondary thread. The two 
threads are assumed to be independent and any communication 
must be explicitly synchronized. 

For managing interaction with the memory mats and quad interface, 
the tile processor has two load/store units, each with its own DMA 
engine as described in Section 3.1. The load/store units, the func- 
tional units, and the instruction decode share the 8 processor ports 
into tile crossbar for communicating with the memory mats and 
quad interface. 

4. Mapping Streaming and Speculative 
Architectures 

One of the goals of the Smart Memories architecture is to effi- 
ciently execute applications with a wide range of programming 
models and types of parallelism. In the early stages of the project, 
we could not feasibly create, analyze, and map a large number of 
applications directly onto our architecture, yet we needed to evalu- 
ate its potential to span disparate applications classes. Clearly the 
memory system was general enough to allow changing the sizes 
and characteristics of the caches in the system as well as to imple- 
ment other memory structures. However, this is really only part of 
what we need to support different computation models. To provide 
some concrete benchmarks, we configured a Smart Memories 
machine to mimic two existing machines, the Hydra multiprocessor 
[33]   and  the  Imagine  streaming  processor  [25].  These  two 

machines, on far ends of the architectural spectrum, require very 
different memory systems and arrangement of compute resources. 
We then used applications for these base machines to provide feed- 
back on the potential performance of Smart Memories. These 
results are likely to be pessimistic since the applications were opti- 
mized for the existing architecture machine and not for the Smart 
Memories target machine. 

Imagine is a highly-tuned SIMD/vector machine optimized for 
media applications with large amounts of data parallelism. In these 
machines, local memory access is very regular, and computation is 
almost completely scheduled by the compiler. After looking at 
Imagine, we will explore the performance of Hydra, a single chip 4- 
way multiprocessor. This machine is very different from Imagine, 
because the applications that it supports have irregular accesses and 
communication patterns. To improve performance of these applica- 
tions the machine supports speculative thread execution. This 
requires a number of special memory structures and tests the flexi- 
bility of the memory system. 

4.1 Mapping Imagine 

Imagine is a co-processor optimized for high-performance on appli- 
cations that can be effectively encapsulated in a stream program- 
ming model. This model expresses an appUcation as a sequence of 
kernels that operate on long vectors of records, referred to as 
streams. Streams are typically accessed in predictable patterns and 
are tolerant of fetch latency. However, streaming applications 
demand high bandwidth to stream data and are compute-intensive. 
Imagine provides a bandwidth hierarchy and a large number of 
arithmetic units to meet these requirements. 

The Imagine bandwidth hierarchy consists of off-chip DRAM, an 
on-chip stream register file (SRF), and local register files (LRFs) in 
the datapath. The SRF and LRFs provide increasing bandwidth and 
allow temporary storage, resulting in reduced bandwidth demands 
on the levels further away in the hierarchy. The SRF is a 64KB 
multi-banked SRAM accessed via a single wide port. Streams are 
stored in the SRF in the order they will be accessed, yielding high 
bandwidth via the single port. The records of a stream are inter- 



leaved among the banks of the SRF. The LRF level consists of 
many small register files directly feeding the arithmetic units. 

The high stream bandwidth achieved through the storage hierarchy 
enables parallel computation on a large number of arithmetic units. 
In Imagine, these units are arranged into eight clusters, each associ- 
ated with a bank of the SRF. Arithmetic resources of a cluster are 
made up of three adders, two multipliers, and one divide/square- 
root unit. The eight clusters exploit data parallelism to perform the 
same set of operations on different records of a stream in parallel. 
Within each cluster, ILP is exploited to perform parallel computa- 
tions on the different units. All the clusters execute a single micro- 
code instruction stream in lock-step, resulting in a single- 
instruction multiple-data (SIMD) system. 

For this study, we map the SRF and LRF levels of Imagine along 
with its compute resources to the Smart Memories substrate. The 
arrangement of these resources in Imagine is shown in Figure 8. 
The LRFs are embedded in the compute clusters and are not shown 
explicitly. 

8 memory 
banks 

A Smart 
Memories tile 

Stream 
buffers 
4 read/ 
4 write 

Figure 8. Imagine architecture 

The 8-cluster Imagine is mapped to a 4-tile Smart Memories quad. 
Exploiting the SIMD execution of Imagine clusters, each of the 64- 
bit Smart Memories datapaths emulate two 32-bit Imagine clusters 
in parallel. Like Imagine, the mapped implementation is intended to 
be a co-processor under the control of an off-quad host. In the fol- 
lowing sections, we describe the mapping of Imagine to the Smart 
Memories, the differences between the mapping and Imagine, and 
the impact on performance. 

4.1.1 Mapping the bandwidth hierarchy 

In mapping Imagine to Smart Memories, we configure all the mem- 
ory mats on the tiles as streaming and scratchpad memories. Most 

of the mats are allocated to the SRF and are configured in streaming 
mode as described in Section 3.1. Data structures that cannot be 
streamed, such as lookup tables, are allocated in mats configured as 
scratchpad memories. Instructions are stored in mats with the 
decoders configured for explicit indexed addressing. The homoge- 
neity of the Smart Memories memory structure allows the alloca- 
tion of resources to the SRF and scratchpad to be determined based 
on the capacity and bandwidth requirements of each on a per-appli- 
cation basis. The LRFs of Imagine map to the almost identical LRF 
structure of the Smart Memories datapath. 

The SRF is physically distributed over the four tiles of a quad, with 
a total SRF capacity of up to 480KB. Records of a stream are inter- 
leaved among the tiles, each active stream occupying the same mat 
on every one of the four tiles, and different streams occupying dif- 
ferent mats. Multiple streams may be placed on non-overlapping 
address ranges of the same mat at the cost of reduced bandwidth to 
each stream. This placement allows accesses to a mat to be sequen- 
tial and accesses to different streams to proceed in parallel. The 
peak bandwidth available at each level of the hierarchy in Imagine 
and the mapping is summarized in Table 1. The mapping can sus- 
tain bandwidth per functional unit comparable to Imagine at both 
the SRF and LRF levels. 

Level of 
hierarchy 

Imagine 
cluster 

SMFP 
cluster 

Imagine 
FPunit 

SMFP 
arith unit 

SRF BW, 
sustainable 

4 4 0.67 1 

SRF BW, 
burst 

8 4 1.33 1 

LRFBW 34 23 5.66 5.75 

TABLE 1. Comparison of peak BW in words per cycle 

4.1.2 Mapping the computation 

In the Smart Memories datapath, the majority of computations are 
performed in the FP cluster where the bandwidth to sustain parallel 
computation is provided by the LRFs and result buses. Microcode 
instructions are used to issue operations to all FP units in parallel. 
The integer units of Smart Memories tiles are used primarily to per- 
form support functions such as scratchpad accesses, inter-tile com- 
munication, and control flow operations which are handled by 
dedicated units in Imagine. 

4.1.3 Mapping off-tile communication 

Much of the data bandwidth required in stream computations is to 
local tile memory. However, data dependencies across loop itera- 
tions require communication among tiles within the quad. In the 
mapping, these communications take place over the quad network. 
Since we emulate two 32-bit Imagine clusters on a tile, the quad 
network is configured as a half-word network to allow any commu- 
nication pattern among the eight mapped clusters without incurring 
a serialization penalty. 



Streams that generate or consume data based on run-time condi- 
tions require dynamic communication to distribute records among 
all or a subset of the compute clusters. The communication pattern 
for these dynamic events, generated by dedicated hardware in 
Imagine, is determined by a table lookup in the Smart Memories 
mapping. The broadcast control bits in the Smart Memories quad 
network distribute status information indicating participation of 
each cluster in an upcoming communication. These bits combine 
with state information from previous communications to form the 
index into the lookup-table. 

Gather and scatter of stream data between the SRF and off-quad 
DRAM, fetch of microcode into the local store, communication 
with the host processor, and communication with other quads are 
performed over the global network. The first or final stage of these 
transfers also utilizes the quad network but receives a lower priority 
than intra-quad communications. 

4.1.4 Evaluation of the Imagine Mapping 

To evaluate the performance of the mapping, we conducted cycle- 
accurate simulations of four kernels by adapting the Imagine com- 
pilation and simulation tools. The simulations accounted for all dif- 
ferences between Imagine and the mapping, including the hardware 
resource differences, the overheads incurred in software emulation 
of certain hardware functions of Imagine, and serialization penal- 
ties incurred in emulating two Imagine clusters on a tile. When an 
aspect of the mapping could not be modeled exactly using the 
Imagine tools, we modeled the worst-case scenario. Latencies of 
32-bit arithmetic operations were assumed to be the same for both 
architectures since their cycle times are comparable in gate delays 
in their respective target technologies. The kernels simulated - a 
1024-point FFT, a 13-tap FIR filter, a 7x7 convolution, and an 8x8 
DCT - were optimized for Imagine and were not re-optimized for 
the Smart Memories architecture. 

Simulations show that none of the observed kernels suffer a slow- 
down due to inadequacy of the available SRF bandwidth of four 
accesses per cycle. However, constraints other than SRF bandwidth 
lead to performance losses. Figure 9 shows the percentage perfor- 
mance degradation for the four kernels on the mapping relative to 
Imagine. These performance losses arise due to the constraints dis- 
cussed below. 

Reduced unit mix 

The Smart Memories FP cluster consists of two fewer units (an 
adder and a multiplier) than an Imagine cluster, which leads to a 
significant slowdown for some compute bound kernels (e.g. con- 
volve). Simulations show that simply adding a second multiplier 
with no increase in memory or communication bandwidth reduces 
the performance degradation relative to Imagine for convolve from 
82% to 7%. We are currently exploring ways to increase the com- 
pute power of the Smart Memories tile without significantly 
increasing the area devoted to arithmetic units. 

Bandwidth constraints (within a tile) 

In the Smart Memories datapath, communication between the FP 
and integer units and memory/network ports takes place over a lim- 
ited number of buses. This contrasts with a full crossbar in Imagine 
for the same purpose, leading to a relative slowdown for the map- 
ping. 

Longer latencies 

The routed, general interconnects, used for data transfers outside of 
compute clusters in the Smart Memories architecture, typically 
have longer latencies compared to the dedicated communication 
resources of Imagine. While most kernels are tolerant of stream 
access latencies, some that perform scratchpad accesses or inter- 
cluster communications are sensitive to the latency of these opera- 
tions (e.g.^r). However, heavy communication does not necessarily 
lead to significant slowdowns if the latency can be masked through 
proper scheduling (e.g. fft). Other causes of latency increases 
include the overheads of emulating certain functions in software in 
the mapping, and serialization delays due to emulating two clusters 
on a single tile. 

100 

80 

60 

S    40 

20 

Degradation Factors 

Longer latencies I        I 

BW constraints K2Q 
Reduced unit mix |        | 

HJSJjjJ 

ffi fir convolve dct 

Figure 9. Performance degradation 

According to simulation results, the bandwidth hierarchy of the 
mapping compares well with that of the original Imagine and pro- 
vides the necessary bandwidth. However, constraints primarily in 
the compute engines and communication resources lead to an over- 
all performance loss. The increase in run-time over Imagine is mod- 
erate: 47% on average and within a factor of two for all the kernels 
considered. These results demonstrate that the configurable sub- 
strate of Smart Memories, particularly the memory system, can sus- 
tain performance within a small factor of what a specialized 
streaming processor achieves. 

4.2 Mapping Hydra 

The Hydra speculative multiprocessor enables code from a sequen- 
tial machine to be run on a parallel machine without requiring the 
code to be re-written [34][35]. A pre-processing script finds and 
marks loops in the original code. At run-time, different loop itera- 
tions from the marked loops are then speculatively distributed 
across all processors. 



The Hydra multiprocessor hardware controls data dependencies 
across multiple threads at run-time, thereby relaxing the burden on 
the compiler and permitting more aggressive parallelization. As 
shown in Figure 10, the Hydra multiprocessor consists of four 
RISC processors, a shared on-die L2, and speculative buffers which 
are interconnected by a 256-bit read bus and a 64-bit write-through 
bus. The speculative buffers store writes made by a processor dur- 
ing speculative operation to prevent potentially invalid data from 
corrupting the L2. When a processor commits state, this modified 
data is written to the L2. The read bus handles L2 accesses and fills 
from the external memory interface while the write-through bus is 
used to implement a simple cache-coherence scheme. All proces- 
sors snoop on the write-through bus for potential RAW violations 
and other speculative hazards. 

Write-through 
Bus (64h) 

Figure 10. Hydra architecture 

When a speculative processor receives a less-speculative write to a 
memory address that it has read (RAW hazard), a handler invali- 
dates modified lines in its cache, restarts its loop iteration, and noti- 
fies all more-speculative processors that they must also restart. 
When the head (non-speculative) processor commits, it begins work 
on a thread four loop iterations from its current position and notifies 
all speculative processors that they must update their speculative 
rank. 

During the course of mapping Hydra we found that performance 
degradation was introduced through three factors: memory configu- 
ration limitations, algorithmic simplifications, and increases in 
memory access time. Similar to the approach taken with Imagine, 
we conducted cycle-level simulations by adapting the Hydra simu- 
lation environment [35] to reflect the Smart Memories tile and quad 
architecture. 

4.2.1 Memory configuration 

In the Smart Memories implementation of Hydra, each Hydra pro- 
cessor and its associated LI caches reside on a tile. The L2 cache 
and speculative write buffers are distributed among the four tiles 
that form a quad. Figure 11 shows the memory mat allocation of a 
single tile. The dual-ported mats are used to support three types of 
memory structures: efficient set-associative tags, tags that support 
snooping, and arbitration-simplifying mats. 

H-word line 

L2 Data Mats {2-way SA) 

111.11 
0$ 

{2-wnSA) 

T 
Tag 

J 

LI 1$ 

\nst Ta J 

J 
\ Ports (four of the mats are dual-ported) 

Figure 11. Hydra's tile memory mat allocation 

One quarter of the L2 resides on each tile. The L2 is split by 
address, so a portion of each way is on each tile. Rather than dedi- 
cate two mats, one for each way, for the L2 tags, a single dual- 
ported mat is used. Placing both ways on the same tile reduces the 
communication overhead. Single-ported memories may be effi- 
ciently used as tag mats for large caches, but they inefficiently 
implement tags for small caches. For example, the LI data tags are 
not completely utilized because the tags only fill 2KB. The LI data 
tags are dual-ported to facilitate snooping on the write bus under the 
write-through coherence protocol. 

Finally, dual-ported mats are used to simplify arbitration between 
two requestors. The CAM (not shown) stores indices which point 
into the speculation buffer mat, which holds data created by a spec- 
ulative thread. Data may be written to this mat by the tile's proces- 
sor and then read by a more speculative processor on an LI miss at 
the same time. In this case, the dual-ported mat avoids complex 
buffering and arbitration schemes by allowing both requestors to 
simultaneously access the mat. 

The Smart Memories memory mats architecture causes certain 
aspects of the mapping's memory configuration to differ from those 
of the Hydra baseline [36], as detailed in Table 2. Compared to 
Hydra, the Smart Memories configuration uses lower set-associativ- 
ity in the L2 and LI instruction caches to maximize the memory 
mat utilization. The performance degradation due to lower associa- 
tivity is at most 6% as shown in Figure 12. 



LI Cache 
Hydra 

LI Cache 
SM 

L2 Cache 
Hydra 

L2 Cache 
SM 

Configuration Separate 
.    I&D 

caches 

Separate 
I&D 

caches 

Central- 
ized 

Distrib- 
uted 

Word Size 32b 64b 32b 64b 

Capacity 2K words 2K words 32K 
words 

32K 
words 

Associativity 2-way 
(D,I) 

2-way (D) 
1-way (I) 

8-way 2-way 

Line Size 4 words/ 
line 

4 words/ 
line 

8 words/ 
line 

8 words/ 
line 

Access Time 1-cycle 2-cycles 4-cycles 7-cycles 

# Control Bits/ 
Word 

tag: 3 
data: 2 

tag: 5 
data: 2 

tag: 2 tag: 2 

TABLE 2. Memory configuration comparison 

4.2.2 Algorithmic modifications 

Algorithmic modifications were necessary, since certain Hydra-spe- 
cific hardware structures were not available. This section presents 
two examples and their performance impact. 

Conditional gang-invalidation 

On a restart. Hydra removes speculatively modified cache lines in 
parallel through a conditional gang-invalidation if the appropriate 
control bit of the line is set. This mechanism keeps unmodified lines 
in the cache as opposed to clearing the entire cache, thus improving 
the LI hit rate. Although the conditional gang-invalidation mecha- 
nism is found in other speculative architectures, such as the Specu- 
lative Versioning Cache [37], it is not commonly used in other 
architectures and introduces additional transistors to the SRAM 
memory cell. Therefore, in the Smart Memories mapping, algorith- 
mic modifications are made so the control bits in the LI tag are not 
conditionally gang-invalidated. 

Under Hydra's conditional gang-invalidation scheme, lines intro- 
duced during speculation are marked as valid lines and are invali- 
dated when a thread restarts. In the Smart Memories configuration, 
lines introduced during speculation are valid for a specified time 
period and are only permanently marked valid if they are accessed 
before the processor's next assigned thread commits. Simulations 
show that this alternative to conditional gang-invalidation decreases 
performance by up to 12% and requires two extra bits in the tag. 

L2 Merge 

In Hydra, the L2 and speculative buffers are centrally located, and 
on an LI miss, a hardware priority encoder returns a merged line. 
Data is collected from the L2 and less speculative buffers on a 
word-by-word basis where the more recent data has priority. How- 
ever, in Smart Memories the L2 and speculative buffers are distrib- 
uted. If a full merge of all less-speculative buffers and the L2 is 
performed, a large amount of data is unnecessarily broadcast across 
the quad network. 

Simulations show that most of the data comes from either the L2 or 
the nearest less-speculative processor on an LI miss. Therefore, the 
L2 merge bandwidth is reduced by only reading data from the L2 
and the nearest less-speculative processor's speculative write buffer. 
Neglecting the different L2 latency under the Smart Memories 
memory system leads to a performance degradation of up to 25%. 
The performance degradation is caused by a small number of 
threads which are restarted when they read the incorrect data on an 
L2 access. 

4.2.3 Access Times 

The memory access times in the Smart Memories mapping are 
larger due to two factors: crossbar delay and delay due to distrib- 
uted resources. Hydra has a 1-cycle LI access and a 4-cycle L2 
merge, while the Smart Memories configuration has a 2-cycle LI 
access and 7-cycle L2 merge. The delay through the crossbar 
affects the LI access time, and since the L2 is distributed, the L2 
merge time is increased. The 2-cycle load delay slot is conserva- 
tively modeled in our simulations by inserting nops without code 
rescheduling; the resulting performance degradation is up to 14%. 

The increased L2 access time has a greater impact on performance 
than the LI access time and causes performance degradations 
greater than 40% on the mSSksim and wc benchmarks. The perfor- 
mance degradations on the other benchmarks are less than 25%. 
The increase in the L2 access time is due to the additional nearest- 
neighbor access on the quad interconnect. 

4.2.4 Simulation results 

Figure 12 shows the performance degradations caused by the 
choice of memory configurations, algorithms, and memory access 
latency. The memory access latency and algorithmic changes con- 
tribute the greatest amount of performance degradation, whereas 
the configuration changes are relatively insignificant. Since the 
Hydra processors pass data through the L2, the increased L2 
latency in Smart Memories damages performance the most for 
benchmarks that have large amounts of communication between 
loop iterations, such as compress, mSSksim, and wc. 

100, . . . 

80 

•2   60 
■I 

S    40 

20 

Degradation Factors 

L1/L2 Latency I       I 

Algorithm J^B 
Mem Configuration I        I 

at i se 
1 1 .1 
^ OQ s s 

00 

I I 

Figure 12. Performance degradation 



In Figure 13, the Smart Memories and Hydra speedups arc calcu- 
lated by dividing the execution time of one of the processors in 
Hydra by the respective execution times of the Smart Memories and 
Hydra architectures. Scalar benchmarks, mSSksim and wc, have the 
largest performance degradations and may actually slow down 
under the Smart Memories configuration. Since Hydra does not 
achieve significant speedup on these benchmarks, they should not 
be run on this configuration of Smart Memories. For example, we 
would achieve higher performance on the wc benchmark if we 
devoted more tile memory to a larger LI cache. 

3.5 

3 

2.5 

t     2 

1.5 

I 

0.5 

Hydra EZl 
Smart Memories ^Q 

a. I 
I oc 

I ■S       -^ 

Figure 13. Speedup 

5. Conclusion 

Continued technology scaling causes a dilemma -- while computa- 
tion gets cheaper, the design of computing devices becomes more 
expensive, so new computing devices must have large markets to be 
successful. Smart Memories addresses this issue by extending the 
notion of a program. In conventional computing systems the memo- 
ries and interconnect between the processors and memories is fixed, 
and what the programmer modifies is the code that runs on the pro- 
cessor. While this model is completely general, for many applica- 
tions it is not very efficient. In Smart Memories, the user can 
program the wires and the memory, as well as the processors. This 
allows the user to configure the computing substrate to better match 
the structure of the applications, which greatly increases the effi- 
ciency of the resulting solution. 

Our initial tile architecture shows the potential of this approach. 
Using the same resources normally found in a superscalar proces- 
sor, we were able to arrange those resources into two very different 
types of compute engines. One is optimized for stream-based appli- 
cations, i.e. very regular applications with large amounts of data 
parallelism. In this machine organization, the tile provides very 
high bandwidth and high computational throughput. The other 
engine was optimized for applications with small amounts of paral- 
lelism and irregular memory access patterns. Here the programma- 
bility of the memory was used to create the specialized memory 
structures needed to support speculation. 

However, this flexibility comes at a cost. The overheads of the 
coarse-grain configuration that Smart Memories uses, although 
modest, are not negligible; and as the mapping studies show, build- 
ing a machine optimized for a specific application will always be 
faster than configuring a general machine for that task. Yet the 
results are promising, since the overheads and resulting difference 
in performance are not large. So if an application or set of applica- 
tions needs more than one computing or memory model, our recon- 
figurable architecture can exceed the efficiency and performance of 
existing separate solutions. Our next step is to create a more com- 
plete simulation environment to look at the overall performance of 
some complete applications and to investigate the architecture for 
inter-tile interactions. 

6. Acknowledgments 

We would like to thank Scott Rixner, Peter Mattson, and the other 
members of the Imagine team for their help in preparing the Imag- 
ine mapping. We would also like to thank Lance Hammond and 
Kunle Olukotun for their help in preparing the Hydra mapping. 
Finally we would like to thank Vicky Wong and Andrew Chang for 
their insightful comments. 

7. References 

[ 1 ] K. Diefendorff and P. Dubey. How Multimedia Workloads 
Will Change Processor Design. IEEE Computer, pages 43- 
45, Sept. 1997. 

[2]        G. A. Slavenberg, et al. The Trimedia TM-1 PCI VLIW 
Media Processor. In Proceedings of Hot Chips 8,1996. 

[3]        L. Lucas. High Speed Low Cost TM1300 Trimedia 
Enhanced PCI VLIW Mediaprocessor. In Proceedings of 
Hotchips II, pages 111-120, Aug. 1999. 

[4]       J. O'Donnell. MAPIOOOA: A 5W, 230MHz VLIW Medi- 
aprocessor. In Proceedings of Hot Chips H, pages 95-109, 
Aug. 1999. 

[5] P. Kalapathy. Hardware-Software Interactions on MPACT. 
IEEE Micro, pages 20-26, Mar. 1997. 

[6]       C. Kozyrakis, et al. Scalable Processors in the Billion-tran- 
sistor Era: IRAM. IEEE Computer, pages 75-78, Sept. 
1997. 

[7]        M. Horowitz, et al. The Future of Wires. SRC White Paper: 
Interconnect Technology Beyond the Roadmap, 1999 
(http://www.src.org/cgi-bin/deliver.cgi/sarawp.pdf7/areas/ 
nis/sarawp.pdO- 

[8]       D. Matzke, et al. Will Physical Scalability Sabotage Perfor- 
mance Gains? IEEE Computer, pages 37-9, Sept. 1997. 

[9]        C. Kaplinsky. A New Microsystem Architecture for the 
Internet Era. Presented in Microprocessor Forum, Oct. 
1999. 



[10]     E. Waingold, et al. Baring It All to Software: Raw 
Machines. IEEE Computer, pages 86-93, Sept. 1997. 

[11]     S. Hauck, et al. The Chimaera Reconfigurable Functional 
Unit. In Proceedings of the 5th Annual IEEE Symposium on 
Field-Programmable Custom Computing Machines, pages 
87-96, Apr. 1997. 

[12]     R. Wittig, et al. OneChip: an FPGA Processor with Recon- 
figurable Logic. In Proceedings IEEE Symposium on 
FPGAsfor Custom Computing Machines, pages 126-35, 
Apr. 1996. 

[13]     J. Hauser, et al. Garp: a MIPS Processor with a Reconfig- 
urable Coprocessor. In Proceedings of the 5th Annual IEEE 
Symposium on Field-Programmable Custom Computing 
Machines, pages 12-21, Apr. 1997. 

[14]     H. Zhang, et al. A IV Heterogeneous Reconfigurable Pro- 
cessor IC for Baseband Wireless Applications. In Digest of 
Technical Papers ISSCC 2000, pages 68-69, Feb. 2000. 

[15]      H. Kim, ef al. A Reconfigurable Multi-function Computing 
Cache Architecture. In Eighth ACM International Sympo- 
sium on Field-Programmable Gate Arrays, Feb. 2000. 

[16]     E. Mirsky, et al. MATRIX: a Reconfigurable Computing 
Architecture with Configurable Instruction Distribution and 
Deployable Resources. In Proceedings of the IEEE Sympo- 
sium on FPGAsfor Custom Computing Machines, pages 
157-66, Apr. 1996. 

[17]      A. DeHon. DPGA Utilization and Application. In Proceed- 
ings of the 1996 International Symposium on FPGAs, Feb. 
1996. 

[18] A. DeHon. Trends Towards Spatial Computing Architec- 
tures. In Proceedings of the International Solid-State Cir- 
cuits Conference, pages 362-63, Feb. 1999. 

[ 19] R5000 Improves FP for MIPS Midrange. Microprocessor 
Report, Jan. 22 1996. 

[20]      R. B. Lee. Subword Parallelism with MAX-2. IEEE Micro, 
pages 51-59, July/Aug 1996. 

[21]     A. Peleg and U. Weiser. MMX Technology Extension to the 
Intel Architecture. IEEE Micro, pages 42-50, July/Aug 
1996. 

[22]      A. Peleg, et al. Intel MMX for Multimedia PCs. Comm. 
ACM, pages 25-38, Jan. 1997. 

[23] MIPS Digital Media Extension. Instruction Set Architec- 
ture Specification, http://www.mips.com/MDMXspec.ps 
(currentOct. 21,1997) 

[24] M. Tremblay, et. al. VIS Speeds New Media Processing. 
IEEE Micro, pages 10-29, July/Aug., 1996 

[25]     S. Rixner, et al. A Bandwidth-Efficient Architecture for 
Media Processing. In Proceedings of the 31st Annual Inter- 
national Symposium on Microarchitecture, pages 3-13, 
Nov.-Dec. 1998. 

[26]      R. Sites. It's the Memory, Stupid! Microprocessor Report, 
pages 19-20, August 5,1996. 

[27]     J. Williams, et al. A 3.2GOPS Microprocessor DSP for 
Communication Applications. In Digest of Technical 
Papers ISSCC 2000, pages 70-71, Feb. 2000. 

[28]     B. Amrutur. Design and Analysis of Fast Low Power 
SRAMs. Ph.D. Thesis, Stanford University, Aug. 1999. 

[29]     N. Jouppi. Improving Direct-Mapped Cache Performance 
by the Addition of a Small Fully-associative Cache and 
Prefetch Buffers. In Proceedings of the 17th Annual Sym- 
posium on Computer Architecture, pages 364-73, May 
1990. 

[30] S. Palacharla, et al. Evaluating Stream Buffers as a Second- 
ary Cache Replacement. In Proceedings of the 21st Annual 
International Symposium on Computer Architecture, pages 
24-33,1994. 

[31]     K. Farkas, et al. How Useful Are Non-blocking Loads, 
Stream Buffers and Speculative Execution in Multiple Issue 
Processors? In Proceedings of the First International Con- 
ference on High Performance Computer Architecture, 
pages 78-89, Jan. 1995. 

[32]      S. Rixner, et al. Register Organization for Media Process- 
ing. To appear in 6th International Symposium on High- 
Performance Computer Architecture. 

[33]     L. Hammond, et al. A Single-chip Multiprocessor. IEEE 
Computer, pages 79-85, Sept. '97. 

[34]     L. Hammond, et al. Data Speculation Support for a Chip 
Multiprocessor. In Proceedings of Eighth International 
Conference on Architectural Support for Programming 
Languages and Operating Systems (ASPLOS VIII), pages 
58-69, Oct. 1998. 

[35]     K. Olukuton, et al. Improving the Performance of Specula- 
tively Parallel Applications on the Hydra CMP. In Proceed- 
ings of the 1999 ACM International Conference on 
Supercomputing, June 1999. 

[36]      L. Hammond. The Stanford Hydra Chip. In Proceedings of 
Hot Chips 11, pages 23-31, Aug. 1999. 

[37]      S. Gopal, et al. Speculative Versioning Cache. In Proceed- 
ings of the Fourth International Symposium on High-Per- 
formance Computer Architecture (HPCA-4), Feb. 1998. 


